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FOREWORD 

This report summarizes the progress of the Auburn University 

Electrical Engineering Department toward fulfillment of the requirements 

in NASA Contract NAS8-11184. The contract is administered by the Auburn 

Research Foundation. 

Monthly progress letters have been submitted prior to this report. 

Contract progress has been reviewed by telephone and also in meetings 

with Mr. T:A. Barr, Contract Supervisor, National Aeronautics and Space 

Administration, Huntsville, Alabama. 
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INTRODUCTION 

The final two models of the 2280-MHz FM television exciter unit 

were completed and delivered to the NASA Astrionics Laboratory at 

Hunt svi 1 le, Alabama. 

The required design specifications for the 1720-MHz FM transmitter, 

and a complete description of the proposed transmitter operation, are 

presented in this report. An analysis of two types of automatic fre- 

quency control systems, which can provide the required frequency sta- 

bility, is also given in this report. 

An analytical and experimental study of the effects of bandwidth- 

limited, frequency-modulated, transmitter systems was made. Also, the 

effect of synchronous clamping in such a bandwidth-limited system was  

investigated. The results of these tests were presented in a special 

technical report dated July 15, 1966. 

A review of progress made on the Millimeter Waves Study is included 

in the last section of this report. 
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I. RADIO FREQUENCY SYSTEMS 

M. A. Honnell, W. E .  Faust, H. L. Deffebach, and W. W. Agerton 

A. 2280-MHz Television Exciter Unit 

Serial numbers 7 and 8 of the Model S - 1  series of the 2280-MHz 

FM television exciter unit were completed and delivered to the NASA 

Astrionics Laboratory at Huntsville, Alabama. 

B. Description of the Planned 1720-MHz FM Transmitter 

A 1720-MHz FM transmitter that will transmit high-quality video 

information from a space vehicle to a ground receiving station is 

planned. The required design specifications for the transmitter are 

as follows: 

1. A video input impedance of 75 ohms. 

2. A video input signal of 1.4 volts peak-to-peak. 

3 .  Video circuits to accommodate either polarity of input signal. 

4 .  A video bandwidth of  5 Hz to 10 MHz (+ 1 db). 

5. A provision for a pre-emphasis network. 

6. An RF bandwidth of 20 MHz (flat to t 1.0 db) from 1710 MHz 

to 1730 MHz. 

7. A frequency-modulated radio-frequency output of 20 watts into 

50 ohms. 

A frequency stability requirement of 

temperature range of -20 C to 80 C. 

A capability of being switched on or 

8.  
0 0 

9. 

2 

.01 percent for the 

off from a remote location. 



3 

10. A capability to transmit high-quality video information while 

subjected to random vibrations of 20 to 2000 Hz at 21 G ' s  for 

four seconds along each of the three major axes, and 20 to 

2000 Hz at 16 G's for 3 minutes along each of the three major 

axes. 

11. A case capable of being pressurized. 

The proposed transmitter is shown in block diagram form in Figure 1. 

A s  indicated, the transmitter has two distinct sections: (1) the 

exciter unit, comprising the exciter and an accompanying dc to dc con- 

verter, and (2) the power amplifier unit, employing two cavity-type 

amplifiers and an accompanying dc to dc converter. The exciter unit 

will accept a video input of 1.4 volts peak-to-peak, and will provide 

a frequency-modulated radio-frequency output of 0.5 watts. The power 

amplifier will amplify the radio-frequency output of the exciter unit 

to 20 watts. 

The transmitter's physical configuration will consist of two 

separate units, one mounted atop the other. The exciter and its 

associated power supply will be contained in the first unit and the 

power amplifiers and their power supply in the second unit. Drawings 

of the proposed cases and their mounting are shown in Figures 2 and 3 .  

Each unit will be complete and requires no accessories to perform its 

intended function. Each will be capable of being pressurized and will 

meet environmental and other flight requirements. Because of these char- 

acteristics, each can be used separately for other application. 

Internally, the exciter case will be designed to allow mounting of 

modular-type circuit boards. The layout will be such that it allows access to 
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Fig. 2--End view of  t h e  proposed transmitter cases 
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circuit components for tuning and adjustment. The power amplifier case 

will provide a mount for two amplifiers and a power supply. Each case 

will be fabricated from a solid aluminum block. 

1. Exciter Unit 

The exciter unit will consist of the exciter and an accompanying dc 

to dc converter. A block diagram of the exciter is presented in Figure 

4. This section has seven major sub-sections: 

and clamping circuits, (2) the voltage-controlled oscillator, (3) the 

(1) the video amplifier 

transistor frequency multiplier, ( 4 )  the radio-frequency amplifier chain, 

( 5 )  the diode frequency multiplier, ( 6 )  the automatic frequency control 

circuits, and (7) the circuitry to provide the keying pulse for the 

automatic frequency control loop. The block diagram for the proposed 

dc to dc converter, to be used with the exciter, is shown in Figure 5. 

The dc to dc converter also has seven major sub-sections, as shown in 

the diagram. 

a. Video Amplifier and Clampine; Circuit 

The video amplifier section will accept an input signal (either 

polarity) of 1.4 volts peak-to-peak, and produce a clamped output wave- 

form. This section will feature integrated-circuit amplifiers and a 

keyed clamping circuit. The video bandwidth will be 5 Hz to 10 M H z .  

b. Voltape-Controlled Oscillator 

The signal from the video amplifier will modulate a voltage-controlled 

Clapp oscillator by means of a varactor diode that is connected to the 

tank circuit of the oscillator. The oscillator will deviate from 106.875 MHz 

to 108.125 MHz corresponding to the maximum modulating signal swing. This 
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v a r i a t i o n  w i l l  produce a peak-to-peak d e v i a t i o n  from 1710 t o  1730 Mz 

a t  t he  output  of t h e  e x c i t e r  u n i t .  

c. T r a n s i s t o r  Frequency M u l t i p l i e r  

The t r a n s i s t o r  frequency m u l t i p l i e r  w i l l  m u l t i p l y  t h e  frequency- 

modulated RF s i g n a l  from t h e  o s c i l l a t o r  by a f a c t o r  o f  four.  A common- 

e m i t t e r  power a m p l i f i e r  o p e r a t i n g  i n  t h e  class-C mode, which has  an  

ou tpu t  t h a t  i s  r i c h  i n  harmonics, w i l l  be used f o r  t h i s  purpose. With 

s t a t e - o f - t h e - a r t  t r a n s i s t o r s ,  an approximate power of 100 mW i s  a n t i -  

c i p a t e d  a t  t h e  ou tpu t  of t h e  m u l t i p l i e r .  

d .  Radio Frequency Amplifier Chain 

The a m p l i f i e r  cha in  of t h e  e x c i t e r  u n i t  w i l l  c o n s i s t  of two common- 

emit ter  power a m p l i f i e r s  i n  cascade. With t h e  c a p a b i l i t i e s  o f  a v a i l a b l e  

t r a n s i s t o r s ,  a g a i n  of 15 db can be ob ta ined  w i t h  t h e  two a m p l i f i e r s  i n  

cascade. 

t h e  i n p u t  o f  t h e  diode m u l t i p l i e r  i n  o r d e r  t o  produce t h e  e x c i t e r  out-  

This w i l l  produce t h e  output  of two w a t t s ,  which i s  r equ i r ed  a t  
- 

pu t  of  0.5 w a t t .  

e. Diode Frequency M u l t i p l i e r  

The diode m u l t i p l i e r  w i l l  accept  t h e  output  of t h e  power a m p l i f i e r  

cha in ,  and w i l l  m u l t i p l y  t h i s  frequency by fou r .  This m u l t i p l e r  w i l l  

u se  a Motorola type MV18083 s tep-recovery diode. 

f .  Automatic Frequency Control Loop 

The r e s t  frequency of t h e  vo l t age -con t ro l l ed  o s c i l l a t o r  w i l l  be 

c o r r e c t e d  by an automatic  frequency c o n t r o l  system designed t o  ma in ta in  

t h e  clamped o s c i l l a t o r  frequency w i t h i n  .005 pe rcen t  f o r  a temperature  

range of -2OOC t o  +8OoC. The AFC loop w i l l  f e a t u r e  a keyed switch t o  

p rov ide  a means of comparing a c r y s t a l  r e f e r e n c e  o s c i l l a t o r  s i g n a l  w i t h  t h e  
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voltage-controlled oscillator signal. The switch will allow the voltage- 

controlled oscillator signal to be sampled only when there is no informa- 

tion modulating the VCO. The keyed switch will use PIN diodes to perform 

the switching function. The circuitry, which will provide the pulse to 

bias the appropriate PIN diode into the "on" condition, will be discussed 

in the succeeding section. 

When the rest frequency signal from the VCO is sampled by the switch, 

it will be fed through an RF amplifier to a frequency discriminator. If 

the VCO signal is different in frequency from the reference oscillator 

signal, the discriminator will produce an output pulse proportional to 

the difference in frequency. The output pulse from the discriminator 

will be fed to a pulse amplifier and then to an integrating circuit. 

The integrator will produce a d-c bias voltage that is applied directly 

to the varactor diode in the tank circuit of the VCO. This adjusts 

the bias voltage on the varactor, which in turn changes the varactor 

capacitance, and adjusts the rest frequency of the voltage-eontrolled 

oscillator. 

g. Keying Pulse Generation 

The keying pulse, used for keying the d-c restoring circuit and 

the VCO frequency sampling, will be generated by stripping prominent 

periodic portions from the video input signal. The stripped portions 

will trigger a pulse generator, which will produce a pulse in synchronism 

with the video. The occurrence of the pulse is chosen to coincide with 

periods in the modulating signal, where there are no variations in the modu- 

lating signal. This value of signal establishes a reference for the d-c 
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component of the signal and a "rest" frequency for the oscillator. 

In the case of a television input signal, the keying pulse occurs during 

the horizontal sync pulse of the television waveform. 

h. Dc to Dc Converter 

The power for the exciter unit will be supplied by a single- 

ended switching-transformer dc to dc converter. This converter will 

provide both a positive and a negative 28 volts dc output. 

28 vdc output will have a regulation of 

imum current of one ampere. The negative 28 vdc output will have a 

regulation of 

amperes. 

The positive 

0.1 percent and provide a max- 

2.0 percent and provide a maximum current of 100 milli- 

2. Power Amplifier Unit 

The proposed power amplifier unit consists of two planar triode 

cavity amplifiers operating at 1720 MHz, and an accompanying dc to dc 

converter to supply the necessary voltages. The amplifiers are expected 

to produce an over-all gain of 1 7  db providing an output power of 25 

watts for a 0.5 watt input. An over-all bandwidth of 25 MHz is also expected. 

The individual cavity amplifiers are expected to be similar in 

design and employ double, tuned-cavity output stages to provide the 

necessary bandwidth. The dc to dc converter will have a basic design 

similar to that planned for the exciter unit; but will provide high 

voltages on the order of 600 or 700 volts at 100 milliamperes for the 

plate circuits of the tubes, and filament voltages on the order of 6 

volts at one ampere. The regulation for both outputs will be 2 1.0 

percent. 
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C .  Exciter AFC Systems Analyses 

Two AFC systems, which can provide t h e  frequency s t a b i l i t y  

of 2 .005 percen t  d e s i r e d  f o r  t he  e x c i t e r  u n i t ,  were analyzed. Both 

systems employ gated,  c r y s t a l - c o n t r o l l e d ,  r e fe rence  o s c i l l a t o r s  w i t h  

s t a b l e  ou tpu t  f r equenc ie s ,  which a r e  compared t o  t h e  VCO frequency. 

The s t a b i l i t y  of an e x c i t e r  employing e i t h e r  system i s  l a r g e l y  de t e r -  

mined by t h e  r e f e r e n c e  o s c i l l a t o r  s t a b i l i t y .  Both systems o f f e r  advan- 

t a g e s  and disadvantages which a r e  t o  be discussed i n  t h e  fol lowing 

s e c t i o n s .  

1. Discr iminator  AFC a t  an Intermediate  Frequency. 

a .  System Analysis  

The f i r s t  system analyzed i s  shown i n  Figure 6 .  The output  

frequency of t h e  VCO O f  107 MHz i s  mixed wi th  a c r y s t a l - c o n t r o l l e d  

r e f e r e n c e  frequency of 97 MHz t o  provide an  I F  s i g n a l  of 10 MHz. The 

reference-frequency o s c i l l a t o r  output  i s  ga t ed  by a g a t i n g  pu l se  which 

occur s  i n  synchronism wi th  p e r i o d i c  p o r t i o n s  of t h e  modulating s i g n a l .  

(An example i s  t h e  p e r i o d i c  sync t i p  of a t e l e v i s i o n  s i g n a l ,  during 

which t h e  in s t an taneous  frequency of t h e  VCO i d e a l l y  remains c o n s t a n t ) .  

The I F  s i g n a l  i s  amplif ied i n  t h e  IF a m p l i f i e r ,  t hen  p resen ted  t o  

both t h e  narrow-band and t h e  wide-band d i s c r i m i n a t o r s .  The wide-band discrim- 

i n a t o r  a l lows a wide c a p t u r e  range of t he  VCO frequency p r i o r  t o  lock- 

i n  by t h e  narrow-band ( c r y s t a l )  d i sc r imina to r .  The wide cap tu re  range 

i s  necessa ry  s i n c e  t h e  frequency d r i f t ,  a s  a r e s u l t  of t h e  b a s i c  i n s t a -  

b i l i t y  of t he  VCO, i s  g r e a t e r  than t h e  bandwidth of t h e  c r y s t a l  discrim- 

i n a t o r .  
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The output of the discriminators, which is a pulse of varying 

amplitude and polarity dependent upon the deviation of the IF frequency 

from the discriminator center frequency, is amplified in the pulse 

amplifier; then presented to the integrator. The integrator consists 

mainly of a low-pass filter with a cutoff frequency substantially 

below the AFC pulse repetition frequency. 

The output of the integrator is a slowly varying d-c signal propor- 

tional to the frequency drift of the VCO. It is summed with the video 

modulating signal in the VCO modulating circuit to provide the necessary 

frequency correction. 

The intermediate-frequency AFC system is shown in block diagram form 

in Figure 6. It can be reduced to that of Figure 7, where the symbols 

are defined in the s-domain as follows: 

Vm - the modulating signal voltage, 
K1 - the VCO modulation constant expressed in Hz/volt, 

K2 - the narrow-band discriminator conversion constant expressed 
in volts/Hz, 

K3 - the wide-band discriminator constant expressed in volts/Hz, 
K4 - the open-loop gain due to the amplifiers, the mixer, the 

integrator, coupling factors, etc. , 

G ( S )  - the frequency-dependent factor of the open-loop transfer 
function; largely the low-pass filter transfer function, 

Fo - the output frequency, 
Fm - the instantaneous component of  Fo due to modulation and 

c omp en s a t ion, 

Fv - the uncorrected frequency of the VCO, 
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discriminator AFC sys tem.  

7--Simplified block diagram of an intermediate-frequency 
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FR - t h e  r e fe rence  frequency, 

- t h e  c e n t e r  frequency of the narrow-hand d i sc r imina tg r ,  
FD1 

and 

F - t h e  c e n t e r  frequency of the wide-band d i sc r imina to r .  
D2 
By block diagram a lgebra  t h e  diagram of Figure 7 can be f u r t h e r  

reduced t o  t h a t  shown i n  F igu re  8 where K = K1 (K2 + K3> K4, and t h e  

modulation vo l t age  i s  ignored. The l a t t e r  i s  p o s s i b l e  s i n c e  t h e  ga t ed  

AFC-system compares t h e  VCO frequency during a per iod of cons t an t  l e v e l  

of t h e  modulating s i g n a l .  Thus, the d e s i r e d  ou tpu t  frequency of t h e  

VCO i s  a cons t an t  during t h e  sampling per iods.  A s  shown i n  Figure 8, 

Fo = Fv + Fm 

and 

Fm = K G(s) [FD + (F - F 11, R o  

where  

FD2 ' 
K3 K 

+ - 2 
FD K + K3 

2 

- 
FD1 K + K3 2 

I f  equa t ion  (1) and (2)  a r e  combined, 

0 
F = F + K G ( s )  (FD + FR) .. K G ( S )  F 
0 V 

o r  

(3 1 
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Fig. 

frequency discriminator AFC system. 

8--Further simplified b l o c k  diagram of an intermediate- 
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If a s i n g l e - s e c t i o n ,  low-pass, RC f i l t e r  i s  used, then, 

Upon s u b s t i t u t i o n  of equa t ion  (5) i n t o  equa t ion  ( 4 ) ,  

F + FR 
(6  1 F =  FV + K lIRc . D 

s + 1/RC 1 + K 1 / R C  1 + K 1 / R C  
s + 1 /RC s + 1/RC 

If Fv, F,,, and F 

theorem, 

a r e  considered a s  cons t an t s ,  t hen  by t h e  f i n a l  va lue  R 

l i m  f ( t )  = l i m  s F(s ) ,  
t-m s-0 

t h e  ou tpu t  frequency i s  obtained 

f f D  + f 
~V+ K R .  - 
l + K  l + K  fo - 

Upon rearrangement,  

i n d i c a t i n g  t h a t  t he  output  frequency i s  the sum of  t h e  r e f e r e n c e  

o s c i l l a t o r  f requency,  the composite d i s c r i m i n a t o r  c e n t e r  frequency, 

and an  e r r o r  term which i s  inve r se ly  p r o p o r t i o n a l  t o  the  open-loop 

g a i n  K. 

~~ ~~ 
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The effects on the frequency of the various component stabilities may 

be determined by using a variation of equation (8): 

ables denote design center values, then 

Let primed vari- 

f; + 6,f; + - K ' + 6 f' + f;, + "f;) . (10) 
f:,+S 0 0  f' = l + K  ~ + K ( ~ R  R R  

Since the primed variables denote design center values, where 

f' = f' = f' + f;, , 
0 v R  

the expression (10) is reduced to 

6 f' = ,-+ &Vf{ K (6 f' + 6 f') 
0 0  I f K  1 + K  R R  D D  

by subtracting out f: from both sides of equation (10). 

are stability factors for the frequency determining elements of the AFC 

loop. 

are expressed in percent or parts per million parts. 

The 6 terms 

The factors are dimensionless and may be positive or negative and 

From equation (12), it is seen that for large values of gain (K >> l), 

6of; = + 

Therefore, the frequency error in Hertz is the algebraic sum of the 

(1) the amount the reference oscillator is off the design following: 
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center frequency, (2) the amount the composite discriminator is off its 

design center frequency, and ( 3 )  an amount proportional to the basic 

instability of the VCO and inversely proportional to the open-loop gain 

of the system. 

An expression of  the output frequency stability is obtained from 

equation (13) by factoring out f; from both sides. Thus, 

The polarity of  the frequency drift or instability is determined from 

the polarities of the individual instabilities and their relative mag- 

nitudes. However, on investigation of equation (14), it is seen that 

the maximum instability occurs when all terms have the same polarity. 

The properly designed system corrects for this event and, on that basis, 

the required value of gain K for a desired output stability can be cal- 

culated. The gain factor K is solved for in equation (14), 

Curves illustrating equations (14) and (15) are shown in Figures 9 and 

10 respectively, where typical values of 6,, 6D, 6R, and the ratio of 

fi/fA are assumed. 

b. Composite Discriminator 

A discussion of the composite discriminator formed by the parallel 

arrangement of narrow-band and wide-band discriminators is worthwhile. 
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s t a b i l i t y  f a c t o r  5D, 
i s  assumed t o  be .002 p e r c e n t  and fA/fA = 0.1. 

R The r e f e r e n c e  o s c i l l a t o r  s t a b i l i t y  f a c t o r  b 
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According to Figure 11, the parallel discriminators of (a) reduce to 

the composite of (b), where 

FD2 9 

- - K2 + K3 
FD % + K3 FD1 5 + K3 

and 

K = % + K 3 .  

The frequency drift contributed by the instabilities of the two 

discriminators is given by 

K K 
f' . 6 f ' = 6  2 

2 K2 + K 3  D2 D D D1 K + K~ fil + 2 

Since f; = ' = f' , 
fD1 D2 

6 = c  6 + c  6 
D D1 2 D2 

where C and C are the weighting constants, 
1 2 

K K c1 = and C2 = 3 

Kg + K3 % + %  

A possible difficulty in the use of parallel discriminators is the 

requirement of a relatively low stability factor for the wide-band dis- 

criminator. The composite discriminator curve will contain more than 
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Fig. 
t h e  composite discriminator ( b ) .  

11-Block diagrams of t he  parallel discriminator (a) and 
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one zero-crossing if the instability of the center frequency of the wide- 

band discriminator is greater than one-half the bandwidth of the narrow- 

band discriminator. This is illustrated in Figure 12 for idealized 

discriminator curves. In addition, to provide for the possibility of 

having stability factors of opposite polarity for the two discriminators, 

the allowed instability of the wide-band discriminator must be further 

reduced by the stability factor of the narrow-band discriminator. In 

equation form, the allowed instability of the wide-band discriminator is 

Consider the following typical case of a crystal discriminator and 

a wide-band discriminator operating at 10 MHz with a wide-band bandwidth 

of 2 MHz. Typical values for the crystal discriminator are: stability 

= + .005% and bandwidth, BWD = .2%. From equation 20, 
1 

r .2% f' 1 

or 

16 1 < .095% . 
D -  

2 

A stability factor of .095% requires careful selection of components 

and, possibly, certain methods of compensation for temperature induced 

frequency drift. For example, if the discriminators are operated over 
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Fig. 12--Idealized discriminator curves for a wide-band (a) and 
a narrow-band (b) discriminator and a composite curve (c) for the two 
in parallel. The composite curve has three zero-crossings due to a 
center frequency drift of the wide-band discriminator that is greater 
than one-half the bandwidth of the narrow-band discriminator. 
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0 
a temperature range of 100 Celsius, the stability factor of .095% 

represents a stability of 9.5 ppm/OC for the over-all circult. 

factor is less than that usually quoted by some manufacturers for 

"zero" temperature coefficient components. 

This 

The gain factors, K and K for the discriminators are given by 
2 3 ,  

V V 
K2 = and K3 = P 

BWDl BWD2 

where equal peak IF voltage V is assumed for both discriminators. For 

the typical case and values given, 
P 

V V K = 2 2 andK3= 19. . 
2 .002 f;, .2 f;, 

Fyom equation (19), 

- - K2 = 1/.002 = 500 = .gg 
c1 K + K3 1/.002 + 1/.20 505 2 

and 

K 
- -  - - - .01 . - - 3 =  1/.20 

'2 K + K3 1/.002 + 1/.20 505 2 

The composite stability factor given by equation (18) is 

6 D = c  6 + c  6 
1 D1 2 D2 

or 
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For the typical stability factors given for the discriminators, 

6 = .00293% . 
D 

For this case, the stability factor for the composite discriminator 

greater than 33 over that of the wide-band discriminator. A further 

improvement can be obtained by inserting an additional gain factor in 

the narrow-band discriminator circuit to make the ratio C /C greater. 1 2  

2 .  Gated Discriminator AFC at the Output Frequency. 

The second AFC system analyzed is shown in Figure 13. The output 

frequency of the voltage-controlled oscillator at approximately 107 MHz 

is compared with the crystal-controlled reference frequency at 107 MHz. 

The two frequencies are alternately fed to the discriminator which pro- 

vides an output of pulses whose amplitudes are proportional to the 

difference between the two frequencies. The discriminator is ac coupled 

to the detector, thus, removing the major effect that the discriminator 

center frequency stability has on the over-all stability of the system. 

(A second-order error, attributable to unequal input signals from the 

VCO and the reference oscillator, is caused by discriminator drift). The 

output from the discriminator is fed to a synchronous detector and low- 

pass filter whose output is subsequently applied to the VCO to affect 

necessary frequency-correction. 

The AFC system shown in Figure 13 can be reduced to the diagram 

shown in Figure 14 where the parameters in the s-domain are: 
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i 
+--- FD 

F i g .  1 4 - - S i m p l i f i e d  b l o c k  d i a g r a m  o f  a g a t e d  d i s c r i m i n a t o r  AFC system 
o p e r a t i n g  a t  t h e  VCO freqirenc.:. 



32 

V - the modulating signal voltage, 
K1 - the VCO modulation constant expressed in Hertz/volt, 
K2 - the open-loop gain due to amplifier, the filter, the 

m 

coupling factors, etc., 

K - the discriminator conversion constant due to the VCO signal 
0 

expressed in volts/Hertz, 

KR - the discriminator conversion constant due to the reference 
signal expressed in volts/Hertz, 

FM - the instantaneous component of Fo due to modulation and 

compensation, 

Fv - the uncorrected frequency of the VCO, 

Fo - the output frequency, 
FR - the reference frequency, 

FD - the center frequency of the discriminator, 
V - the discriminator output voltage, 
out 

and 

G ( s )  - the frequency-dependent factor of the open-loop transfer 

function. 

According to Figure 14, 

Fo = F - K1K2 G ( s )  Vout + K V 
V 1 m  e 
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I f  t he  VCO ou tpu t  frequency i s  sampled p e r i o d i c a l l y  during pe r iods  when 

t h e  video input: i s  not  varying and the l e v e l  of video i s  t h e  same dur ing  

each sample, t h e  output  frequency a t t r i b u t a b l e  t o  the modulation i s  zero.  

This would be t h e  case  i f  t h e  video s i g n a l  were a t e l e v i s i o n  s i g n a l  and 

t h e  sampling done during t h e  h o r i z o n t a l  sync-pulse i n t e r v a l .  I f  equa- 

t i o n s  (1) and (2) a r e  combined 

where K(s) = K1K2 G ( s ) .  

t r a n s f e r  func t ion  be determined by a s i n g l e - s e c t i o n  low-pass f i l t e r ,  

then,  

Let t he  frequency-dependent f a c t o r  of t h e  

1 /RC 
s + 1 / R C  * 

G ( s )  = ( 4 )  

By t h e  f i n a l  va lue  theorem, 

( f R  - f D )  - - 1 KlK2KO K1K2KR 
f o  1 + K1%Ko fv  + 1 + K1K2Ko f D  -I- 1 + K 1 3 K o  

I f  K K K > > 1, a s  i s  g e n e r a l l y  the case,  then 
1 2 0  

The system s t a b i l i t y  f a c t o r  can be determined from equa t ion  

(6 )  by l e t t i n g ,  
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f = f ' + 6 f '  
0 0 0 0  

f = f ' + 6 f '  
V V v v  

f R  = f; + ;jRfi 
f =f;,+Sf' 
D D D  

where the primed values are design values and the 6 factors are stability 

factors expressed in percent. After the substitutions from (7) into 

equation ( 6 )  

1 (f; + 6 f') + - KR (fl; + 8Rfi;) 
K, v v  f' + 6 f' = 

K1K2K0 0 0 0  

Since the design values are the same, f; = f' = f' = fi, equation (8) 

reduces to 
v R  

where K = K K K 1 2 0' 

Investigation of equation (9) shows, that for % = K and K very 
0 

large, the output stability factor approaches that of the reference 

oscillator. 

ence voltage to the output voltage that is fed to the discriminator. 

Good limiting is required prior to discrimination to insure that KR 

is approximately equal to K . 

The ratio KR/Ko is determined by the ratio of the refer- 

0 
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The curves of Figure 15 illustrate equation (9) for the expected 

range of values for 6,, hR, 6D, KR/Ko, and K. Typical values are: 

6, - 2 .5% to 2 2% 

6R - _+ .002% 

6D - 2 .5% 

KR/Ko- .995% to 1,0,05% 

K - 100 to 2000. 

The maximum instability occurs when all the component instabilities 

have the same sign. This condition is illustrated in Figure 15. 

D. Peltier Temperature Chamber 

Design and construction has been initiated on a Peltier thermo- 

electric environmental chamber. The Peltier system is designed to 

operate over a temperature range of -2OOC to +80 C. The purpose of 

constructing the chamber is two-fold: (1) to study the feasibility 

0 

of controlling the environment of a solid-state transmitter riding 

on board a space vehicle and (2) to have available a convenient environ- 

mental chamber to temperature test the electronic modules which combine 

to form a transmitter. 

Design of the Peltier system involves three steps: (1) the selec- 

tion of the thermoelectric unit to perform the desired environmental 

task, (2) 

system, and (3 )  the selection of the power supply. 

the design of the actual chamber and the associated support 

A block diagram of the complete system is shown in Figure 16. The 

switch provides a means of reversing the system from the heating to the 

cooling mode or vice-versa. The chamber control panel provides a means 



36 . 9 9 5 ;  - - - "Ri. = { .ggg ; - - - - -  1.00; - 
0 

6 = + 2 %  
v -  

6 = + 1 %  v -  

.020 

n 
U 
C 
a, 

a, a 
E .010 

W 

.008 
0 
0 
k 
0 

V 
(d 
k 

.006 

3 a 
U 
3 
0 

.002 

.001 

400 600 800 1000 2000 100 200 

Open-Loop Gain K 

F i g .  15--Curves o f  t h e  o u t p u t  s t a b i l i t y  f a c t o r  c o  a s  a f u n c t i o n  o f  t h e  
o p e n - l o o p  g a i n  K,  t h e  VCO s t a b i l i t y  f a c t o r  - v ,  and t h e  r a t i o  
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The r e f e r e n c e  s t a b i l i t y  f a c t o r  F R  and d i s c r i m i n a t o r  

- 
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to monitor the operation of the item under test. 

there are provided two coaxial cable connectors with 50-ohm cable 

leading into the chamber enclosure, two coaxial cable connectors with 

75-ohm cable leading into the enclosure and two sets of binding posts, 

intended primarily for dc use. 

modules is provided by the Frigistor power supply, a 30-ampere supply 

purchased from Frigistors, Limited. The Simpson thermistor temperature 

tester provides a means by which three different temperatures may be 

monitored simultaneously. The temperatures monitored are the heat 

sink, the environmental plate and the item under test. 

On the control panel 

Power for driving the thermoelectric 

Tests are currently underway which will result in data and curves 

describing the operation of the Peltier system. 

provide a criterion for further discussing the advantages and limita- 

tions of the system. 

The data gathered will 



11. MILLIMETER WAVES STUDY 

During the summer a study of attenuation in oversized circular 

waveguide was conducted. The study consisted of an experiment on a 

60-foot section and a measurement of the attenuation versus the wave- 

guide-straightness. The results indicated that the 100-foot section 

of circular waveguide used for the environmental chamber need not be 

unreasonably straight to obtain low attenuation. In addition, the 

results indicated that the attenuation increased approximately one db 

per gigacycle when the frequency deviated from the center frequency of 

the rectangular to circular waveguide coupler. This indicated that 

the center frequency of these waveguide transitions played an important 

part in determining the transmitted frequency used in each band. 

Construction of the environmental chamber components was continued, 

and the Fresnel-Zone Lenses are being made. 
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